P Epilogue: Distribution

The website contains bits of four popular websites: Amazon, Facebook, Google, and Twitter. For each of those websites, form a 5×2 grid of ones and zeroes based on whether each rectangle contains a bit of that website. This results in Amazon:

0	1
0	0
1	1
0	0
1	1

Facebook:

0	0
1	0
1	0
0	0
1	1

Google:

0	1
0	1
0	0
0	0
1	0

Twitter:

0	0
0	1
0	0
0	1
1	0

For each of these, the first column forms a binary number indicating the row for an order, and the second column forms a binary number indicating the column for an order. The resulting order coordinates are $(5,21),(13,1),(1,24),(1,10)$

Mark these coordinates on your map.

The shortest route on the map is marked in red:

Take the length of each segment of the route and convert it to a letter. For example, the first three segments have lengths $6,12,25$, which converts to F, L, Y. Doing this for the entire route results in this message: FLYAPLANEOVERALLCABIN

In other words, find the shortest path an airplane would take. That path is in red below:

Again, take the lengths of each segment, which this time requires the Pythagorean Theorem. The lengths are $13,15,14,5,25$, which converts to the final answer
MONEY

